翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Biotechnology engineering : ウィキペディア英語版
Biological engineering

Biological engineering or bioengineering (including biological systems engineering) is the application of concepts and methods of biology (and secondarily of physics, chemistry, mathematics, and computer science) to solve real-world problems related to SSBS life sciences or the application thereof, using engineering's own analytical and synthetic methodologies and also its traditional sensitivity to the cost and practicality of the solution(s) arrived at. In this context, while traditional engineering applies physical and mathematical sciences to analyze, design and manufacture inanimate tools, structures and processes, biological engineering uses primarily the rapidly developing body of knowledge known as molecular biology to study and advance applications of organisms and to create biotechnology.
An especially important application is the analysis and cost-effective solution of problems related to human health, but the field is much more general than that. For example, biomimetics is a branch of biological engineering which strives to find ways in which the structures and functions of living organisms can be used as models for the design and engineering of materials and machines. Systems biology, on the other hand, seeks to exploit the engineer's familiarity with complex artificial systems, and perhaps the concepts used in "reverse engineering", to facilitate the difficult process of recognition of the structure, function, and precise method of operation of complex biological systems.
The differentiation between biological engineering and biomedical engineering can be unclear, as many universities loosely use the terms "bioengineering" and "biomedical engineering" interchangeably.〔NIH working definition of bioengineering http://www.becon.nih.gov/bioengineering_definition.htm accessed, 1/1/2007〕 Biomedical engineers are specifically focused on applying biological and other sciences toward medical innovations, whereas biological engineers are focused principally on applying engineering principles to biology - but not necessarily for medical uses. Hence neither "biological" engineering nor "biomedical" engineering is wholly contained within the other, as there can be "non-biological" products for ''medical'' needs as well as "biological" products for ''non-medical'' needs (the latter including notably biosystems engineering).
==History==
Biological engineering is a science-based discipline founded upon the biological sciences in the same way that chemical engineering, electrical engineering, and mechanical engineering can be based upon chemistry, electricity and magnetism, and classical mechanics, respectively.〔Cuello JC, Engineering to biology and biology to engineering, The bi-directional connection between engineering and biology in biological engineering design, Int J Engng Ed 2005, 21, 1-7〕
Biological engineering can be differentiated from its roots of pure biology or other engineering fields. Biological studies often follow a reductionist approach in viewing a system on its smallest possible scale which naturally leads toward the development of tools like functional genomics. Engineering approaches, using classical design perspectives, are constructionist, building new devices, approaches, and technologies from component parts or concepts. Biological engineering uses both approaches in concert, relying on reductionist approaches to identify, understand, and organize the fundamental units, which are then integrated to generate something new.〔Riley MR, Introducing Journal of Biological Engineering, Journal of Biological Engineering 1,1, 2007, http://www.jbioleng.org,〕 In addition, because it is an engineering discipline, biological engineering is fundamentally concerned with not just the basic science, but its practical application of the scientific knowledge to solve real-world problems in a cost-effective way.
Although engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment, our ability to quickly and reliably engineer biological systems that behave as expected is at present less well developed than our mastery over mechanical and electrical systems.〔Endy D, Foundations for engineering biology. Nature 438,449-4 2005, http://www.nature.com/nature/journal/v438/n7067/full/nature04342.html〕
ABET,〔ABET http://www.abet.org/Linked%20Documents-UPDATE/Criteria%20and%20PP/A004%2010-11%20Accredition%20Policy%20and%20Procedure%20Manual%2011-05-09.pdf, accessed 9/8/2010.〕 the U.S.-based accreditation board for engineering B.S. programs, makes a distinction between biomedical engineering and biological engineering, though there is much overlap (see above). Foundational courses are often the same and include thermodynamics, fluid and mechanical dynamics, kinetics, electronics, and materials properties.〔Linsenmeier RA, Defining the Undergraduate Biomedical Engineering Curriculum http://www.vanth.org/curriculum/def_bme_curr.pdf〕〔Johnson AT, Phillips WM: "Philosophical foundations of biological engineering". ''Journal of Engineering Education''. 1995, 84:311-318〕 According to Professor Doug Lauffenburger of MIT,〔(【引用サイトリンク】url=http://web.mit.edu/be/index.shtml )〕〔(【引用サイトリンク】url=http://be.mit.edu/directory/douglas-a-lauffenburger )〕 biological engineering (like biotechnology) has a broader base which applies engineering principles to an enormous range of size and complexities of systems ranging from the molecular level - molecular biology, biochemistry, microbiology, pharmacology, protein chemistry, cytology, immunology, neurobiology and neuroscience (often but not always using biological substances) - to cellular and tissue-based methods (including devices and sensors), whole macroscopic organisms (plants, animals), and up increasing length scales to whole ecosystems.
The word bioengineering was coined by British scientist and broadcaster Heinz Wolff in 1954. The term bioengineering is also used to describe the use of vegetation in civil engineering construction. The term bioengineering may also be applied to environmental modifications such as surface soil protection, slope stabilization, watercourse and shoreline protection, windbreaks, vegetation barriers including noise barriers and visual screens, and the ecological enhancement of an area. The first biological engineering program was created at Mississippi State University in 1967, making it the first biological engineering curriculum in the United States. More recent programs have been launched at MIT 〔 and Utah State University.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Biological engineering」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.